49 research outputs found

    Arithmetic geometry of toric varieties. Metrics, measures and heights

    Full text link
    We show that the height of a toric variety with respect to a toric metrized line bundle can be expressed as the integral over a polytope of a certain adelic family of concave functions. To state and prove this result, we study the Arakelov geometry of toric varieties. In particular, we consider models over a discrete valuation ring, metrized line bundles, and their associated measures and heights. We show that these notions can be translated in terms of convex analysis, and are closely related to objects like polyhedral complexes, concave functions, real Monge-Amp\`ere measures, and Legendre-Fenchel duality. We also present a closed formula for the integral over a polytope of a function of one variable composed with a linear form. This allows us to compute the height of toric varieties with respect to some interesting metrics arising from polytopes. We also compute the height of toric projective curves with respect to the Fubini-Study metric, and of some toric bundles.Comment: Revised version, 230 pages, 3 figure

    Hermitian structures on the derived category of coherent sheaves

    Get PDF
    The main objective of the present paper is to set up the theoretical basis and the language needed to deal with the problem of direct images of hermitian vector bundles for projective non-necessarily smooth morphisms. To this end, we first define hermitian structures on the objects of the bounded derived category of coherent sheaves on a smooth complex variety. Secondly we extend the theory of Bott-Chern classes to these hermitian structures. Finally we introduce the category \oSm_{\ast/\CC} whose morphisms are projective morphisms with a hermitian structure on the relative tangent complex

    Semipurity of tempered Deligne cohomology

    Get PDF
    In this paper we define the formal and tempered Deligne cohomology groups, that are obtained by applying the Deligne complex functor to the complexes of formal differential forms and tempered currents respectively. We then prove the existence of a duality between them, a vanishing theorem for the former and a semipurity property for the latter. The motivation of this results comes from the study of covariant arithmetic Chow groups. The semi-purity property of tempered Deligne cohomology implies, in particular, that several definitions of covariant arithmetic Chow groups agree for projective arithmetic varieties
    corecore